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STAMP MOTION ON THE SURFACE OF A THIN COVERING 

ON A HYDRAULIC FOUNDATION* 

V.M. ALEKSANDROV and E.V. KOVALENKO 

There is considered the dynamical plane problem of the action of a rigidbody (stamp) 
on an infinitely deep ideal fluid layer. The stamp pressure 1s transmitted to the 

fluid through a thin covering (membrane). The stamp moves at a constant velocity 
over the covering boundary. No friction forces are assumed to exist in the contact 
domain, and steady potential flow exists in the fluid. Such a problem occurs in an 
investigation of the process of the dynamical action of solids on an ice cover sur- 

face. 

The problem is reduced to a one-dimensional integral equation of the first kind of con- 

volution type in a finite interval. The structure of the kernel of the equation obtained, and 
the characteristic singularities of its solution are studied. It is shown that the problemis 
correctly solvable only in the class of generalized functions of slow growth. Asymptotrc 
methods are used to construct an approximate solution of the integral equation. 

1. Let a deformable layer of slight thickness rest on the surface of an infinitely deep 

layer of heavy ideal incompressible fluid (v ZOO). Furthermore, let a rigid stamp, pressed 

to the layer by a force Pwhose eccentricity of application is e, move at a constant veloc- 

ity V without friction along the boundary of such a composite foundation. We assume that 

loss of contact of the covering from the fluid does not occur during stamp motion. We also 

assume that in a moving coordinate system coupled to the stamp, its foundation is described 

by the function f(z') while the line of contact is defined by the inequality I I’ I ..< a. 
The model of a membrane described by the equation 

-c$' = p* (.r, t) - q* (,I, f) - ()*I,‘* (1.1) 

is taken as the physical model of the covering (layer). 

Here "is the displacement of membrane points along the y axis, 0 is the membrane tension, 

p* (z,t) = p(z’) is the reactive pressure acting from the fluid on the layer q* (z, t) 1 Q (t') is 

the contact pressure which differs from zero only for 1.~’ j C a. I’ .- I -.- I’l, and p* is the sur- 

face density of the covering material. 
We will describe the physicomechanical properties of the fluid by linearized steady pot- 

ential-flow equations 

where (p(z',y) 1s the velocity potential, p is the pressure in tie fluid, ~1 is the fluid den- 

sity, g is the gravity constant, L‘,. vy are projections of the fluid particle velocity at a 

point of the flow on the axis of the moving coordrnate system. 

For 11' I.< a it is also known that because of the condition of contact between the stamp 

and the covering 

Y ---IS -c CLC - f (I’)1 (1.3) 

Here 6 f af' is the rigid displacement of the stamp subjected to the applied force P and 

moment M = Pe. 

For y =O the boundary condition (1.1) in the moving coordinate system will have the 

form 

-_"" = p (2’) - q (I’), T = CJ - p*v* (1.4) 
-- 
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Now, as in thin wing theory 

covering surface has the form 

/1/t we assume that the condition of fluid contact with the 

.A%=-_VaU 
au ad (1.5) 

543 

Then, for y = 0 the condition (1.4) and the last relationship in (1.2) canberepresented 

in the form 

-T ~=vM+_g(s)l (1.6) 

” s $=pv-&+pgv-l-f& 

Here and henceforth, we will omit the prime for the moving coordinate 5'. 

We shall assume that the perturbations the fluid, caused by stamp motion, will vanish as 

(9 + yZ)+ 00. 
By using the Fourier integral transform we solve the differential equation (1.2) for cp 

under the boundary conditions (1.6) and the condition of no perturbations in the fluid at in- 

finity. We obtain the following expression for the displacement pi at y = 0: 

Let us examine the case when the velocity of stamp motion is V< V,, where 

(v 1 :- l',*x-* - I), x2 = p*gp-', and 

V,' = 2x2 

V, = ~//oip*, and is the velocity of transverse wave propaga- 

tion in the elastic covering. Then the inner integrand in (1.7) has no poles on the realhalf- 

axis. 
Now using the condition of stamp contact with the covering (1.3), we obtain an integral 

equation governing the contact pressure distribution law q(x). In dimensionless variables 

and notation, it will have the following form 

jl cp (E’) K (-- 5’_T’~dSI=nh-l[~‘+~‘-r((5’)1 (IdI<.) (1.8) 

‘p (5’) = q (ax’) T-b, r (x’) = f (ax’) a-‘, 6’ = 6a-‘, xr = 54-1 

We will henceforth omit the primes in (1.8). 

Let us note that in the particular case of a stamp at rest (V = 0,problem 2), it is nec- 

essary to set B = 0 in (1.8). 

The static condition 

No = PT-’ = f cp(k)dE, dV, = Pe (Ta)-l = j &p(QdE (1.9) 
-I -1 

must still be appended to (1.8). 

Moreover, starting from the physical meaning of the problem under consideration,welater 

require that u(z)E c(-R, R),where I? is an arbitrarily large number. Here c(--R, R) is the 
space of functions continuous for lzl,<R. 

2. Let us note that the problem 2 corresponds to a stamp bending a membrane on a Fuss- 

Winkler foundation with the bedding factor k = pg. The solution of this problem can be found 
in closed form by the method of "partition into sections" /2/. To do this, we represent (1.4) 
with the last relationship in (1.2) taken into account in the form 

-TV," +kv,=O(-co<s<--a) (2.1) 

q (5) = Tf” (5) - kv,, up = -IO + n.z - f (x)1 (I z 1 < a) 
-TV,” +kv,=O (a<s<m) 

It is required to determine vi (5) (i = 1, 2, 3), q (z), the lumped forces P,, P, occuring at 
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the points I = -+a and I = --a, and also the dependence of the quantities b a;!d ? “3 : :,6’ 
magnitude of the force P and the moment M= Pe applred to the stamp. 

The quantity q(z) is determined from the second relationship in (2.1). alid frmn t.hP ;;,r- 
ferential equations of (2.1) under the boundary ccndlt1or:s 

VI - 0 (I.* -m), Vs-+ U (zr + 00) 

v, (-a) = -I6 - aa - /(--a)l, UJ ((I) :: -[6 : aa - f(o)) 

we find the following expressions for II, and L's: 

U*i+,(t.)=-(~+(-l)‘t-l.. -_l[(-l)‘+~a])xexp(H,[a-_(-li)‘+~~]],B~z=kT~’, i=O,i (2.2) 

We find the lumped forces Pj from the conditions 

P, = T Iv,’ (-a) - u,’ (-@I, P, = T lu,’ (a) - L.,’ (a)1 

Substituting (2.2) here andthe formula for v., from (2.1), we obtain 

P, = --Tla -f’ (--a)1 -t TO, 16 - CLU - f ( -a)] !?.3) 

P, = T 1% - ,f’ (c)l + TB, [6 i- czo - f (n)l 

Now, using the statics condition 

I' = P, -I I’? -i- 
f q (4 dr, iIf == a (P? -_ P,) f [ Jq (Z) d.i 
--(I -a 

we will have 

Eliminating the quantity 6 from the second formula In (2.1) and (2.3) and passing to di- 

mensionless variables and the notation 

z -- ax', P. = (a&)-', 'F' (z') = aq (cd) T-’ 
r (t’) = f (a~‘) a-‘, N, = PT-‘, P* -= P,T-’ 

WE arrive III the even case r(z) = r(--I),(L -- 0 at the following relationships <as before, *f 

omit the primes): 

cp* (z) = r” (2) -+ k-2 [hP* f hr’ (1) !- r (1) - r (2)l !i. 5) 

~*+(l+h)r'(t)--h 'r(l)-+', -;- I;-+(r)d+i+h)-' 

" 

3. We now turn to an investigation of the problems 1 and 2 by using the integral equa- 

tion (1.8) obtained above. We represent its kernel in the form 

K (z) .=. (Ir - h,)-' {cos (b,z) ci (b,z) -I- sin (b,z) X (?.l) 

[Si (b,z) -!. 1:2z sgn zl - cos (b2z) ci (b,z) -- sin (b2z) X 
- [Si (b2z) -f ‘/.?x sprl zl}, b, = R - r/S* - 1 

--- 
b, = B + )/B* - 1 

Here ci (I), G(t), and si(z) are the integral cosines and sines. 

On the basis of (3.1) we can formulate 

Lemma 1. For all values of (2 j .< fl, where R is an arbitrarily large number, the fol- 

Lowing representation is valid 
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Here Brv(-_R,R)is the space of functions whose k-th derivatives satisfy the Hzlder 
condition with exponent 0~ v< 1 for ZE (-R, R), and Cis the Euler constant. 

Let us investigate the structure of the solution of the integral equation (1.8). To do 
this we consider the following auxiliary equation 

According to the results in Sect.2, the solution m(z) of the integral equation (3.3) 
should contain delta-functions at the points x f i in the form of components, which would re- 
flect the appearance of lumped forces at the edges of the line of contact in the contact 
forces. Meanwhile, as has been noted earlier, according to the physicalmeaningoftheproblem 
under consideration V(X)E: C(-R,R). This condition imposes a constraint on the order of the 
g&;raliz.ed function q(x). Taking the above into account,wecan formulate the following theor- 

Theorem 1. If q"(s) E C(--l,l), then tne solution of the integral equation (3.3) in 
the space of generalized functions of slow growth 0 /3/ exists, is inique, and has the form 

cp (x) = -l#" (5) + P,6 (5 T 1) -- P,6 (5 - 1) 

where the constants P,(j = i,2) satisfy the relations 

Ip'(1) + 9,' (-1) + P, - p, = 0 

Ip' (-1) - $,' (1) i (I(- 1) 7 + (1) + p, i P? = 0 

(3.4) 

(3.5) 

(6 (r) is the Dirac delta-function). 
Indeed, the function cp(z) of the form (3.4) makes the integral equation (3.3) an identity 

if the relationships (3.5) are satisfied. Uniqueness of the solution (3.4) follows from the 
theorem presented on p-158 in /3/. 

Let us note that for the case of the even function Ip(z) in (3.3), the relationships 
(3.5) yield together with conditions (1.9) 

P, = P, = P* = Ip' (1) - l# (I), No = -211 (I), N, = 0 

while for the odd case we have in an analogous manner 

(3.6) 

P, = -P, = P* = --rp' (1). .I', = 0, Lv, =: 29 (1) (3.7) 

Now, taking account of the representation (3.2), we rewrite the integral equation (1.8) 
in the form 

(3.8) 

Let us assume that r" (5) E c (-1, 1). 
order zero), 

If it is assumed that the function q(.r)E cf, (with 
then because of the properties of the functions F(z) 

will have o” (2)~ C(--1,l). Taking account of Theorem 1, 
mentioned in the lemma, we 

tion. 
we hence obtain the following asser- 

Theorem 2. If r"(Z) E c (-l,i), and the solution of the integral equation (3.8) exists 
in the space of generalized functions of slow growth @, then it has the form 

l--L. ~(x)=~*(*)++[PJn~+ Pzln-- 
h 

+ P16(s$- l)s_ P,b(s---1) (3.9) 

where the function 
the second kind 

'P* (s) E C(--l,i), and is determined from a Fredholm integral equation of 

(3.10) 
-* 
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The constants P,(j = i,2) are connected by the relationships (3.5; and 

I !’ 

and are determined after having solved 0.10) wrth (3.9) and (1.5) taken into acc:)unt. P'or 
the even and odd cases of problems 1 and 2, formulas (i.6) ,+nd (3.7) also hold. 

Considering $((I) known temporarily from (3.11), to prove the theorem we turn to the rr,- 
tegral operator with kernel 15 -.T 1 in (3.8). According to (3.4), we obtain the following 
integral equation of the second kind in tp!x): 

We seek the solution of this equation in the form (3.9). Substituting (3.3) into C !.i.l) 

and using the properties of the delta function, we arrive at the integral. cquatron :3.!O!.Let 
us note that the latter is a Fredholm equation of the second kind with logarithmic kernel and 

contrnucus free term. If (3.10) is solvable for a given value of 1 :.ff (0, 00). then t):e function 
'F* (I) I-: c (-1. 1). The original integral equation (3.8) is here also solvable uniquely. 

4. We turn to problem 2 and find its closed solution by usrng the integrd? etxuation (1.8). 

'Takrng account of the representation (1.8) for K(z) at R -- 0. we obtain the :ntegralequativn 

(3.8) to determine v(z), in which we should set D, := 0,D2 .=: n/2. AS mentioned above, we seek 
its solution in the form of (3.9) (Or = 0). Then the integral equation (3.10) is written in the 

form 
1 F, -. I 1 ‘$ 

(P*(T)- -&-~~~*(5)e~----i_ ) d; _ y (L, + _&I ). (I’,P_‘i 1. + I’&“) (IL: .‘: II (4. I) I. 

The expression (4.1) will hold under the additional relations i3.5). WI I_:1 t.hc i;cc:r:nd 
formula of (?.8), i3.11) (D, .= 0) and the expression for F(z) taken rnto account, we wrote 

(3,5) in the form 

2n-r'(l)--r'(-l)+e-1.L (f*(5)sh+cQ +I!?(1 :-e-~~)(p,--P,)=~~ s -I 

26-r(l)-~(-1)~i-r'(l)-r'(-l)-(~~~)~-~~~ q*(5) 

-1 
,;chfdS+‘~21(1--.)---(1 ,-i.)(~-3).](P1 -rP2)=o 

In the even case (r(z) = r(-z), a (I), by seeking the solution of the integral equation 

(4.1) under the conditions (4.2) in the form 

v* (2) = r” (z) - he’ r (I) + D (D -. coast) 

we arrive at (2.5) after a number of manipulations with the statics conditron !1.9) taken into 

account. Here, however, the question of whether the solution constructed is .a unique sol.ution 

of (4.1) occurs. The answer is qiven in the following theorem. 

Theorem 3. The homogeneous equation (4.1) has no positive eigcnvalues in the class of 

functions 'p* (I) c C (-1, 1) r) V (--1, I). 
Here V(-_1,1) is the space of functions having finite variation O:I the crgmant I 1,ll . 
For the proof we introduce the Fourier transform of the function 1‘ (1) 

0*(U)- &)PQ (at*(") :7 n (X-J), ) I‘ / .c.) (4. .!) 

-1 
and wc rewrite the homogeneous equation (4.1) as follows 

v*b-&a \ - “, Q*(u) e-‘= dr‘ 
u’_t >.-= 1’ (1’1’ 1) 

-. 

!4..1! 

Because of the properties of e*(r). mentioned in the conditions of the theorem, ae 



Stamp motion on the surface on a hydraulic foundation 547 

representation (4.3) is valid, the function V(U) is at least continuous, and the estimate of 

/4/, presented in the parentheses in (4.3) holds. 
We muLtiply both sides of (4.4) by rp*( )d z z and integrate between the limits -1 and +l. 

Taking account of the Parseval equality /3/. we obtain 

(4.5) 

It follows from the estimate above that the integral in (4.5) converges. We also nate 

that to satisfy (4.5) it is necessary and sufficient that CI*(U)EO from which (P*(z)-O and 

the theorem is proved. 
A similar theorem can be proved analogously for the integral equation (3.10) Of problem 

1 also. 

5. Let us construct asymptotic solutions of the integral equation (3.10) corresponding 
to problem 1, for large and small values of the parameter bE to, co). 

Taking (3.1) into account, we see that the representation 

F (2) = (b2 - 6,)-' & @,s) In b, lz I - A VW fn b, I z I4 (5.1) 

(2 I 2 I)%-% (44 - b,-‘f, (WI + fs (W - fa @A) 

fj tz) = kj, .jkz’k+’ (j = 1,233) 

is valid for F(z) in (3.2) for all Of 1 z ]< M. 
The constants ajk are not presented in the interests of brevity. 

Following /5/, we seek the solution of the integral equation (3.10) for large values of 
the parameter h in the form 

q* (Z) = 5 .i 'pi j (5) Ami (III h)j 
i=O f=O 

(5.2) 

Substituting (5.2) into (3.10) and then equating coefficients of identical powers of h-r 
and lnh in the left and right sides of the relation obtained, we obtain an infinite system 
of recursion relationships for the successive determination of the functions CPU (2): 

%o@)= r"(r), B,a(r)=+~ cpco(E)fnIE---zjdj +$(D,+~D,)IP,+P,fr'(l)+r'(- *)I, (5.3) 
-1 

Having determined rp*j(z) from (5.3), we then find the constants Pj (j = 1, 2), tj and CL 
from f1.9), (3.5) and (3.12) by relating them to N,and hrl and we therefore construct the 
asymptotic solution of the integral equation of problem 1 for large values of the parameter 
h, according to (3.9). 

For the even case of the problem, we will have to the accuracy of terms of the order h-r 

P*hix--*)+-$P*In++ --&(321,+2D,)]P*+r’(l)] 

6. We now examine the case of sufficiently small h. We limit ourselves to the constru- 
ction of the principal (zero) term of the asymptotic of the solution of problem 1. 

We first obtain the degenerate solution of the integral equation (1.8) as h-+0 Making 
the change of variables z=&-r, 
small, and 3 -ho, we will have 

u = yh in the kernal K(z)and taking into account that h is 
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K(a,= J.f cos yydy - h?Kd (y) 
; 

Then the integral equation (1.8) becomes 

and is an equation of the contact problem about stamp interaction with a Fuss-Winkler found- 
ation. Its solution can easily be obtained, and has the form 

'Pa (t) = P @)A-' 2 h-2 16 + CL.2 - r (@I (6.2) 

We turn to an investigation of (1.8) for he1 by the method of merging asymptotic ex- 
pansions /6/. We understand the external domain to be the interval -1 f m&G tQ 1 - nh on 
which the "degenerate solution" of the problem (6.2) can be taken as the solution of the equa- 
tion of problem 1 with sufficiently small error. We call internal domains the small neighbor- 
hoods of the points .z -7 &i with size n;L. and mh; in these domains the influence of the 
covering on the contact stress distribution under the stamp is commensurate with the quantity 

Bo (t). Boundary-layer type solutions should be constructed in the internal domains, which 
should reflect the characteristic behavior of the function cp (t) in the neighborhoods of the 
points x = -+l, and should smoothly merge with the degenerate solution mO(r) on the domain 
boundaries t = 1 - nL, r = -1 -j- mk in conformity with (3.9). 

Taking into account that for nl< 1 and mh< 1 

q0 (1 - n1) = 51 (1) h-*II -t 0 (nh)] (0. 3' 

vo(--i +ml) - 52 (-1) h+ li + 0 (mh)l 

we will see a solution of boundary-layer type in the neighborhood of the points I = *1 i n 
the respective forms 

P+(z)=P++ + O(nQ] (6.4) 

cp_(z) = X-aY(+)[l-+ O(mh)] 

We shall perform the merger by considering that for any sufficiently large m and n: 

'pO (1 - nh) = ‘p+ (1 - nh), ‘p. (-1 + mA.) -= cp_ (-1 + mh) (6.5) 

In order to obtain an equation to determine the function x @)* we substitute cp, (1) 
from (6.4) into the integral equation (1.8), make the change of variables of the form t= 

(1 - t) A-‘, T = (1 - F) h-’ and then let h tend to zero. We consequently arrive at the deduc- 

tion that the function x(t) should be found from the integral equation 

s 
x@)K(t-r)dr=nQ(l, (O<f<oo) (6.6; 

0 

We see in an analogous manner that the function Y(t)(t =(l $ z)hm’) should also satisfy 

an equation of the type (6.6). 

By using (6.2)- (6.6), we determine the uniformly-suitable /6/ asymptotic solution 0 f 

the integral equation (1.8) 

7. Therefore, there remains to find the solution of the Wiener-Hopf integral equation 

(6.6). AS is known /7/, the main difficulty is in factorizing the function 

L, (If) = (U' - 2E~U' + E* + l)_' = L, (u)L_ (u) (e - 0) 

hence by using the idea of Koiter /7/, we approximate L(u) by the following: 

L(u) = -L- - I’,+(u) 
Ii*+ 1 P,* (u) 

(7.1) 

where P,*(u),P,*(Y) are even polynomials in identical orders 2" without zeroes on the real axis. 

Furthermore, limiting ourselves to obtaining just qualitative results, we examine the 
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simplest case of (7.1) by setting P1*(u)=pz* (u)=l. In conformity with (3.9), we seek the solu- 
tion of the integral equation (6.6) in the form 

x(4 = x' (l) + Qn6 0) (Q* = AP,) (7.2) 

Substituting (7.2) into (6.6), we will have 

f 
X* (T) K (L -z) d? = x [‘J (1) - n-‘Q,K (t)] (0 < t < m) (7.3) 

0 

from which we obtain the following Riemann problem for the real axis by the methods in /8/: 

(7.4) 

As is known /9/, because of the completely definite selection of the constant Qlf all 

the solvability conditions introduced in /8/ for the functional equation (7.4) can be avoided 
in the class of functions decreasing at infinity. Namely, by setting 

Qa = Q (1) (7.5) 

we find x*(f)= B(1). We note that the first of the merger conditions (6.5) is satisfied here. 
We also note that (7.5) is a solvability condition of the kind (3.5) for (1.8) as h- 0 in the 
space of generalized functions of slow growth. 

A solution of boundary-layer type can analogously be constructed on the edge I= --i. 
The relation between the quantities X,,N, and 6:a is found from the statics condition (1.9) 

with (7.2), (7.5), (6.2), (6.5) taken into account. 
In the case of a stamp with rounded corners, the half-length n of the contactlinebecomes 

an unknown. To determine the quantity (I in this case, it should be taken into account that 
the function v'(z)= C(-E.E), and hence, P,= P,=O. This condition is an additional condition 
for the determination of 0. 

In conclusion, let us note that the problem of motion of a rigid stamp over a Kirchhoff- 
Love plate lying on a hydraulic base can be studied in an analogous way. Here the general 
solution of the problem will contain the expression 

as 

1. 
2. 

3. 
4. 
5. 

6. 
7. 

8. 
9. 

a component. 
P,6 (z + I) + M16' (z -;- 1) + P,6 (z - 1) _t M,6' (z - 1) 

The authors are grateful to N.Kh. Arutiunian for valuable remarks. 

REFERENCES 

SEDOV L.I., Plane Problems of Hydrodynamics and Aerodynamics. NAUKA, Moscow, 1966. 
ALEKSANDROV V-M., Certain contact problems for beams, plates, and shells. Inzh. Zh., Vo1.5, 

No.4, 1965. 

VIADIMIROV V.S., Equations of Mathematical Physics. NAUKA, Moscow, 1976. 
BOKBNER S., Lectures on Fourier Integrals. FIZMATGIZ, Moscow, 1962. 
ALEKSANDROV V.M. and ARUTIUNIAN N.Kh., Interaction of a moving elastic stampwith anelastic 

half-plane through a stiffener or a thin ideal fluid layer, PMM, Vo1.42, No.3, 1978. 

VAN DYKE M., Perturbation Methods in Fluid Mechanics.Academic Press, N.Y. and London, 1964. 
NOBLE B., Methods Based on the Wiener-Hopf Technique for the Solution of Partial Differ- 

ential Equations, Pergamon Press, 1959. 

GAKHOV F.D., and CHERSKII Iu.I., Equations of Convolution Type. NAUKA, Moscow, 1978. 
IVANOV V.V., On Wiener-Hopf equations of the first kind. Dokl. 

No.3, 1963. 
Akad. Nauk SSSR, Vo1.151, 

Translated by M.D.F. 


